Abstract. This paper introduces a novel meshfree methodology based on radial basis function–finite difference (RBF-FD) approximations for the numerical solution of partial differential equations (PDEs) on surfaces of codimension 1 embedded in (ℝ^3). The method is built upon the principles of the closest point method, without the use of a grid or a closest point mapping. We show that the combination of local embedded stencils with these principles can be employed to approximate surface derivatives using polyharmonic spline kernels and polynomials (PHS + Poly) RBF-FD. Specifically, we show that it is enough to consider a constant extension along the normal direction only at a single node to overcome the rank deficiency of the polynomial basis. An extensive parameter analysis is presented to test the dependence of the approach. We demonstrate high-order convergence rates on problems involving surface advection and surface diffusion, and solve Turing pattern formations on surfaces defined either implicitly or by point clouds. Moreover, a simple coupling approach with a particle tracking method demonstrates the potential of the proposed method in solving PDEs on evolving surfaces in the normal direction. Our numerical results confirm the stability, flexibility, and high-order algebraic convergence of the approach.