Frequency optimized RBF-FD for wave equations

Abstract

We present a method to obtain optimal RBF-FD formulas which maximize their frequency range of validity. The optimization is based on the idea of keeping an error of interest (dispersion, phase or group velocity errors) below a given threshold for a wavenumber interval as large as possible. To find the weights of these optimal finite difference formulas we solve an optimization problem. In a previous work we developed a method to optimize the frequency range of validity for finite difference weights. That method required to solve a system of nonlinear equations with as many unknowns as half of the number of weights, which is a very hard task when the number of nodes gets large. The current method requires solving an optimization problem with only one parameter, which makes finding a global minimum easier, and thus can be used for bigger stencils. We also study which of the standard RBF are more appropriate for this problem and introduce a new RBF that depends on two parameters. This new RBF improves the resulting frequency response of the RBF-FD methods while keeping the cost of the optimization problem low. © 2018 Elsevier Inc.

Publication
Journal of Computational Physics

Add the full text or supplementary notes for the publication here using Markdown formatting.

Manuel Kindelan
Manuel Kindelan
Honorific Professor
Diego Álvarez
Diego Álvarez
Associate Professor
Pedro González
Pedro González
Associate Professor